Building Blocks: Scales
In my last lesson, we further examined the concept of 'intervals', as derived from the 'chromatic' scale. Now let's look at
constructing other scales, and seeing how we can build 'chords' from these scales. To begin, let's re-examine the 'chromatic'
scale.
Ex.1 ( We'll use the key of 'E' as our reference)
Scale Degree (interval)= R b2 M2 b3 3 4 b5 5 #5 M6 b7 M7 R(8va)
Note name = E F F# G G# A Bb B C C# D D# E(8va)
Enharmonic names* = Gb Ab A# Db Eb
(*NOTE: The 'Enharmonic names' are notes that are the same but have different names, depending on their function. The notes
on the bottom of the chart are enharmonic names that are not commonly used in notation because of confusion,i.e.
in the key of 'E', G# is less confusing to read than Ab because of the A already in the key of 'E'. More on this as
we explain Major and minor scales.)
Now, let us focus on constructing some scales. We shall begin with the 'Major' scale. If you know "Do, Re, Mi, Fa, So, La, Ti, Do"
then you already have a basic idea of this scale. Whereas the 'Chromatic' scale has 12 notes plus the octave - each a half-step
(or one fret) apart, the Major scale has 7 notes plus the octave. The intervals are divided differently. Let's look at how we
derive the Major scale.
Ex.2 (Again, using the key of 'E' Major)
Chromatic Scale Degree= R b2 M2 b3 3 4 b5 5 #5 M6 b7 M7 R(8va)
Major Scale Degree = R M2 3 4 5 M6 M7 R(8va)
Note Names = E F# G# A B C# D# E
(NOTE: We use 'F#' instead of 'Gb' because it is easier to read than 'Gb' and then a 'G#')
Now we'll examine how this scale is structured. We have a series of 2 Whole steps (2WS), then a Half Step (HS), then 3WS, and
finally, a last HS. Illustrated thus:
EX.3 (Key of 'E' Major)
Interval Steps = {WS} {WS} {HS} {WS} {WS} {WS} {HS}
Major Scale Degree= R M2 3 4 5 M6 M7 R (8va)
Note Names = E F# G# A B C# D# E
(NOTE: R="Root" or is commonly refered to as the "1". Both names are interchangeable and will be interchanged as we progress
in our studies.)
You may have noticed that I have refered to this scale as the "Major" scale. The reason is because of the presence of the
Major Third (M3)in the scale. A scale is determined to be a Major or Minor scale based on it's third. There are different
types of Major and Minor scales, each with thier own nomenclature (names) and structures. But we can separate them into
"families" of scales, such as "Major" and "Minor."
Let's see how this lays out on a single string on the fretboard. Again we shall use the Key of 'E' Major.
Ex.4
8va 16va(Two Octaves)
6th String 'E' = --0---2----4---5---7---9---11---12--14---16--17--19--21---23---24---
Note Name = E F# G# A B C# D# E F# G# A B C# D# E
Major Scale Degree = R M2 3 4 5 M6 M7 R M2 3 4 5 M6 M7 R
Interval Steps = {W} {W} {H} {W} {W} {W} {H} {W} {W} {H} {W} {W} {W} {H}
Laying out a scale in a 'linear'(or on a line) fashion helps you to learn a scale by hearing it in your ear and mind, other
than in box positions (which we will get to further down the road), which relies on your eyes rather than your ears. You may
be asking yourself if the 'E' string is the only place to play an 'E' Major scale. Well, no. You can play the 'E' Major scale
all over the neck on ANY string. But you must start in a different position, according to what note begins what string. For
example, you can play all of the notes of the 'E' Major scale up and down the 'A',or 5th, string, but you have to begin on 'A'
in the scale. The following examples will show how the scale falls on the strings. Note that we are only using the key of 'E'
Major for these examples. Changing keys will change the order and position of the fingerings. (More on that later.)
Ex.5a
1st string 'E' --------------------------------------------------------------------
2ND string 'B' --------------------------------------------------------------------
3rd string 'G' --------------------------------------------------------------------
4th string 'D' --------------------------------------------------------------------
5th string 'A' --------------------------------------------------------------------
6th string 'E' --0---2---4---5---7---9---11---12--14---16--17--19--21---23---24----
Note Name = E F# G# A B C# D# E F# G# A B C# D# E
Major Scale Degree = R M2 3 4 5 M6 M7 R M2 3 4 5 M6 M7 R
Ex.5b
1st string 'E' --------------------------------------------------------------------
2ND string 'B' --------------------------------------------------------------------
3rd string 'G' --------------------------------------------------------------------
4th string 'D' --------------------------------------------------------------------
5th string 'A' --0---2---4---6---7---9---11---12--14--16--18--19--21---23---24-----
6th string 'E' --------------------------------------------------------------------
Note Name = A B C# D# E F# G# A B C# D# E F# G# A
Major Scale Degree = 4 5 M6 M7 R M2 3 4 5 M6 M7 R M2 3 4
Ex.5c
1st string 'E' --------------------------------------------------------------------
2ND string 'B' --------------------------------------------------------------------
3rd string 'G' --------------------------------------------------------------------
4th string 'D' --1---2---4---6---7---9---11---13--14--16--18--19--21---23--(25)*--- *(theoretical fret)
5th string 'A' --------------------------------------------------------------------
6th string 'E' --------------------------------------------------------------------
Note Name = D# E F# G# A B C# D# E F# G# A B C# D#
Major Scale Degree = M7 R M2 3 4 5 M6 M7 R M2 3 4 5 M6 M7
Ex.5d
1st string 'E' --------------------------------------------------------------------
2ND string 'B' --------------------------------------------------------------------
3rd string 'G' --1---2---4---6---8---9---11---13--14--16--18--20--21---23--(25)*---
4th string 'D' --------------------------------------------------------------------
5th string 'A' --------------------------------------------------------------------
6th string 'E' --------------------------------------------------------------------
Note Name = G# A B C# D# E F# G# A B C# D# E F# G#
Major Scale Degree = 3 4 5 M6 M7 R M2 3 4 5 M6 M7 R M2 3
Ex.5e
1st string 'E' --------------------------------------------------------------------
2ND string 'B' --0---2---4---5---7---9---10---12--14--16--17--19--21---22---24-----
3rd string 'G' --------------------------------------------------------------------
4th string 'D' --------------------------------------------------------------------
5th string 'A' --------------------------------------------------------------------
6th string 'E' --------------------------------------------------------------------
Note Name = B C# D# E F# G# A B C# D# E F# G# A B
Major Scale Degree = 5 M6 M7 R M2 3 4 5 M6 M7 R M2 3 4 5
Ex.5f
1st string 'E' --0---2---4---5---7---9---11---12--14---16--17--19--21---23---24----
2ND string 'B' --------------------------------------------------------------------
3rd string 'G' --------------------------------------------------------------------
4th string 'D' --------------------------------------------------------------------
5th string 'A' --------------------------------------------------------------------
6th string 'E' --------------------------------------------------------------------
Note Name = E F# G# A B C# D# E F# G# A B C# D# E
Major Scale Degree = R M2 3 4 5 M6 M7 R M2 3 4 5 M6 M7 R
As you can see, the 'E' Major scale plays on all strings, but the scale begins on different notes, depending
on how the string is tuned. Practice the 'E' Major scale up and down each string individually. You do not have
practice them one note after another only. You can jump positions (I highly recommend it!), or slide into the
other notes any way you choose - as long as you stay using the notes of the key.
Next time, we will look at the Major scale laterally, or ACROSS the neck.